Гаркунов Д.Н. Триботехника. Износ и безызносность. Страница 262

Коррозионные явления играют существенную роль в процессе кави- тационного изнашивания. Например, в морской воде интенсивность изнашивания намного выше, чем в пресной при прочих равных условиях. Однако механическим воздействиям принадлежит основная роль, свидетельством чему может служить низкая кавитационная стойкость лакокрасочных, цинковых и алюминиевых покрытий, имеющих малую механическую прочность, эбонита и плексигласа, являющихся коррозионно- стойкими неметаллическими материалами. Скорость кавитационного изнашивания может быть в сотни и более раз выше скорости коррозионного разрушения поверхностного слоя.

Предупредить кавитацию можно, проектируя гидромеханическую систему так, чтобы во всех точках потока давление не опускалось ниже давления парообразования. Однако возможность кавитации всегда следует учитывать.

Интенсивность кавитационного изнашивания зависит от температуры, свойств жидкости и природы материала деталей. Влияние вязкости незначительно. С увеличением поверхностного натяжения изнашивание происходит более интенсивно. Введение в воду веществ, образующих и способствующих образованию эмульсий (масла и эмульгаторы), понижает поверхностное натяжение и снижает кавитационное изнашивание. Воде с температурой 50°С соответствует наибольшая интенсивность изнашивания. По обе стороны от этой температуры наблюдается довольно резкое падение интенсивности изнашивания.

Кавитационная стойкость материала определяется его составом и структурой. Повышение содержания углерода в углеродистой стали увеличивает ее стойкость. Однако, начиная с 0,8% С, она начинает падать. Пластинчатый перлит более стоек, чем зернистый. Введение никеля и хрома в сталь повышает ее стойкость за счет снижения количества феррита, увеличения степени дисперсности и др. Шаровидная форма графита благоприятна. Наиболее стойким является низколегированный чугун (1% Ni, 0,3% Mo) с шаровидным графитом.